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Rational approximation with multidimensional scattered data

Xu-Guang Hu,* Tak-San Ho, and Herschel Rabitz
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Accurate and efficient rational approximation schemes are presented for interpolating multidimensional
scattered data with a novel weighted least-squares procedure including domain decomposition. Two particular
representations of the method are formulated and the corresponding algorithms are implemented. Numerical
tests on three- and six-dimensional model systems are carried out, demonstrating high efficiency and accuracy.
This work was motivated by the need for multidimensional function approximation using irregular grids when
solving quantum fluid dynamics equations, and the method should have broader physical applications.
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Many mathematical modeling problems require multi
mensional scattered data interpolation. A particular case
interest arises in the fluid dynamical formulation of quantu
mechanics which has recently been explored for the sim
tion of molecular systems@1–3#. Within the Lagrangian de-
scription of quantum fluid dynamics~QFD!, a major numeri-
cal challenge is the need for accurate and efficient func
and derivative approximation schemes working with an
regular grid distribution.

It is generally difficult to properly treat multidimensiona
interpolation and approximation problems, especially,
volving scattered data. Computationally, issues of accur
efficiency and stability play critical roles in these problem
@4,5#. The approximation of a function by rational expre
sions has provided an attractive means for a variety of
merical applications. One prime advantage of rational
proximations is their ability to handle functions with pole
which is particularly relevant in solving the QFD equatio
and many other applications. Rational approximations can
determined in a number of ways@6,7#, but often with prac-
tical limitations, especially, in multidimensional situation
For example, Pade´ approximants require an explicit serie
expansion of the function to be approximated, and numer
values of the corresponding high order function derivativ
are usually not readily available. Moreover, although the
efficients of the desired rational approximation can be de
mined by interpolating any set of tabulated data points,
procedure is usually feasible only for one-dimensional pr
lems. Finally, the related continued fractions are yet to
explored for multidimensional applications. Below, a robu
least-squares approach in conjunction with a domain dec
position technique is introduced for generating multidime
sional rational approximations using scattered data. This
proach is intended to circumvent many practical difficult
with the existing methods.

A rational approximation of anN-dimensional function
f (r ) in a Cartesian coordinate framer5$j1 ,j2 , . . . ,jN% can
be expressed as follows

g~r !5S b01 (
k51

m

bkfk~r !D Y S 12 (
k51

n

bm1kfm1k~r !D ,

~1!
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where$fk(r )%k51
m1n is a set of independent multidimension

monomials whose linear combinations render multidime
sional polynomials with no common factors in the numera
and denominator. We propose the following algorith
within the framework of the weighted linear least-squa
procedure, to determine the unknown coefficients in Eq.~1!,
especially, with the availability of only scattered data. Fir
rearrange Eq.~1! into

g~r !5b01 (
k51

m

bkfk~r !1g~r !(
k51

n

bm1kfm1k~r !, ~2!

and then replaceg(r ) on the right-hand side of the abov
equation byf (r ) to yield the relation

g~r !5b01 (
k51

m

bkfk~r !1 f ~r !(
k51

n

bm1kfm1k~r !, ~3!

which can be considered as a better approximation tof (r )
than Eq.~1!. The replacement ofg(r ) by f (r ) is essential in
the development of the method. Consequently, the right-h
side of Eq.~3! now becomes linear in terms of the unknow
coefficients, assuming that the values off (r ) are known on
an irregular grid. Given a set of data$r i , f (r i)% i 51

M such that
M>m1n11, and an appropriate weightw(r i), minimiza-
tion of the quadratic error functional

J@$bk%#5(
i 51

M

@ f ~r i !2g~r i !#
2w~r i !, ~4!

yields a set ofm1n11 linear algebraic equations for th
unknown coefficients$bk%k50

m1n :

(
j 50

m1n

ak jbk5bk , k50,1,2, . . . ,~m1n! ~5!

with

ak j5(
i 51

M

Bk~r i !Bj~r i !w~r i !, bk5(
i 51

M

f ~r i !Bk~r i !w~r i !,

~6!

where $Bj (r )% j 50
m1n is a new basis set composed

$1,fp(r ), f (r )fq(r )%p51,2, . . . ,m
q5m11,m12, . . . ,m1n . In general, the ac-

curacy of the rational approximation will increase as ad
tional higher order monomials are included in Eq.~1!, how-
5
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ever the efficiency of solving Eq.~5! will decrease due to the
increased number of unknown coefficients. In the followi
treatment, assuming that the functionf (r ) is locally smooth,
then good accuracy and efficiency can be achieved by
domain decomposition technique, i.e., dividing the unde
ing domain into a set ofoverlappingsubdomains, without
invoking high order monomials in Eq.~1!.

With a properly chosen weight functionw(r ,r c), a local
rational approximationg(r ,r c) to f (r ) over a subdomain
V(r c) centered atr c5$j1c ,j2c , . . . ,jNc%, is then carried
out following the same procedures described in Eqs.~1!–~5!.
This process is repeated using a sequence of properly ch
V(r c)’s to cover the whole domain. In the following trea
ment, two local rational approximations~LRA! using only
low-order monomials are presented.

The first LRA, hereafter referred to as~2,1! LRA, is based
on employing all monomials up to second-order in the n
merator and only first-order monomials in the denomina
to produce

g2,1~r ,r c!5

b0~r c!1 (
k51

N

bk~r c!j̃k1 (
k51

N8

bN1k~r c!~ j̃ j̃8!k

12 (
k51

N

bN1N81k~r c!j̃k

,

~7!

where j̃k5jk2jkc and N85N(N11)/2 with N being the
dimensionality ofr . Here, the second-order monomials a
denoted as (j̃ j̃8)k and the total numberNb of unknown co-
efficients isN1(N11)(N12)/2. Although Eq.~7! in prin-
ciple can include higher order monomials, numerical res
indicate that the current formulation, with suitable doma
decompositions, is efficient and accurate for rendering g
accuracy.

The second LRA is implemented in twopartial correction
steps for attaining better numerical efficiency, i.e., in ter
of smaller computer memory storage, and is related to c
tinued fractions. The scheme starts, i.e., at the zeroth s
with a ~1,1! LRA

g1,1
(0)~r ,r c!5

b0
(0)~r c!1 (

k51

N

bk
(0)~r c!j̃k

12 (
k51

N

bN1k
(0) ~r c!j̃k

, ~8!

around the local centerr c . It is noted that, in this step, only
Nb

(0)52N11 unknown coefficientsbk
(0) are involved over

the subdomainV(r c) utilizing the data set$r i , f (r i)% i 51
L with

L>2N11.
In the first correction step, to improve the accuracy of E

~8!, a partial correction, involving the~1,1! LRA and all
second-orderdiagonalmonomials in the numerator, is intro
duced via the followingansatz

g2,1
(1)~r ,r c!5

g1,1
(0)~r ,r c!1b0

(1)~r c!1 (
k51

N

bk
(1)~r c!j̃k

2

12 (
k51

N

bN1k
(1) ~r c!j̃k

, ~9!
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where the numberNb
(1) of unknown coefficientsbk

(1) remains
as 2N11.

In the second step, further corrections are performed
replacing the second-order diagonal termsj̃2 in the numera-
tor with the remaining second-ordercross terms. For an
N-dimensional problem, there are altogetherNc5N(N
21)/2 second-order cross monomials$( j̃ j̃8)k%k51

Nc . To attain
even more numerical efficiency, this step is implemented
sequence of small steps. Specifically, when the dimensio
ity N is an odd number, theNc cross terms are divided into
ns5(N21)/2 subgroups, each withN terms. Likewise,
when N is an even number, they are divided intons5N/2
subgroups, each withN21 terms. In each small step, only
small number, eitherN or N21, of cross terms are include
for the correction. At the (n21)th small step withn.1,
following the same procedures as described in the first c
rection step, we can easily, in terms of the firstn21 sub-
groups of second-order cross terms, arrive at the expres

g2,1
(n)~r ,r c!5

g2,1
(n21)~r ,r c!1b0

(n)~r c!1 (
k51

N8
bk

(n)~r c!~ j̃j 8̃!k

12 (
k51

N

bN81k
(n)

~r c!j̃k

,

n52, . . . ,ns11, ~10!

where N85N when N is an odd number andN85N21
whenN is an even number. We remark that the vectorb @cf.
Eq. ~6!# consists of the quantityf (r i)2g2,1

(n21)(r i ,r c), instead
of just f (r i), in the calculations leading tog2,1

(n)(r ,r c). More-
over, the same set of local data$r i , f (r i)% i 51

L for the subdo-
mainV(r c) is utilized throughout the second correction ste
The numberNb

(n) of unknown coefficientsbk
(n) with n.1 in

each step is 2N whenN is even and 2N11 whenN is odd.
Finally, eachg2,1

(n)(r ,r c) with n.1 takes on a closed form o
upward continued fractions of low-order polynomials afte
expressing all its preceeding counterparts explicitly in ter
of monomials. The complete continued fraction LR
g2,1

(ns11)(r ,r c) is hereafter denoted as~1/2/2,1! LRA. Our nu-
merical results in this paper reveal that the accuracy of
~1/2/2,1! LRA is nearly independent of the chosen orderi
of the correction sequence. The main advantage of the~1/2/
2,1! LRA is that the numberNb

(n) of the unknown coefficients
bk

(n) , with n50,1,2, . . . ,ns11, in each correction step, in
cluding the zeroth one, scales linearly with the spatial dim
sionality N while the numberNb for ~2,1! LRA scales with
N2.

The choice of weight functionw(r ,r c) in the weighted
least-squares procedure, cf. Eqs.~4!, ~5!, and~6!, may have
significant effect on the accuracy and stability of the p
posed LRA methods. Three commonly used weight functio
are Gaussians, cubic splines, and quartic splines@8#. How-
ever, our numerical results in someN53 and 6 model sys-
tems ~see below! showed that the LRA methods based
thesea priori weight functions are less accurate and sta
even compared to their counterparts based on a simple
stant weight. In the following a robust procedure is propos
1-2
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TABLE I. Errors for functions and their derivatives.

~2,1! LRA ~1/2/2,1! LRA RBF a

E( f )b E(d1) E(d2) E( f ) E(d1) E(d2) E( f ) E(d1) E(d2)

three-dimensional case

P2 exact exact exact 3.1@24# 4.3@23# 3.0@22# 6.5@26# 4.4@24# 1.1@22#c

P3 4.3@24# 3.4@23# 5.0@22# 4.7@24# 6.1@23# 4.5@22# 1.0@23# 4.9@22# 1.4@21#

P4 5.4@24# 3.9@23# 5.1@22# 8.4@24# 8.6@26# 9.1@22# 2.7@23# 1.2@22# 9.4@21#

F 4.6@24# 5.0@23# 5.5@22# 2.6@24# 4.0@23# 7.0@22# 8.3@24# 2.7@22# 1.2@21#

six-dimensional case

P2 exact exact exact 1.3@24# 2.5@23# 2.8@22# 3.7@26# 8.8@24# 7.3@23#

P3 3.0@24# 4.1@23# 2.3@22# 7.7@24# 6.8@23# 8.1@22# 1.9@23# 3.2@22# 1.0@21#

P4 4.4@24# 3.9@23# 3.6@22# 8.9@24# 9.3@23# 8.4@22# 2.2@23# 3.9@22# 8.3@21#

F 2.0@24# 1.9@23# 1.4@22# 5.7@24# 6.3@23# 7.8@22# 7.8@24# 1.3@22# 3.1@21#

aa56 is used.
bFor N53, 21<Pn<1 and22<F<2. ForN56, 21.5<Pn , F<1.5.
c@2k# means 102k throughout the table.
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to incorporatea posterioriweights that are intended to pro
vide good accuracy and stability to the methods: First,
solve the linear algebraic equations for the unknown coe
cientsbk ~or bk

(n)) over each subdomainV(r c) with a con-
stant weightw(r )51. Then, we calculate the deviation
di(r c)5u f (r i)2g(r i ,r c)u,i 51,2, . . . ,L to obtain thea pos-
teriori weight of the form

w~r i ,r c!512di~r c!/dmax~r c!, ~11!

wheredmax(r c) is the largest deviation out of theL devia-
tionsdi(r c). Finally, we once again solve the linear algebra
equations for the same set of unknown coefficients using
weights based on Eq.~11!. The test results show that th
procedure can significantly improve the overall accuracy
stability.

Numerical tests of the LRA schemes are carried out
three-dimensional~3D! and six-dimensional~6D! functions
defined in the associated hypercubes@21,1#3 and @21,1#6,
respectively. These examples, given functional values o
irregular grids, demonstrate the quality of the LRA schem
for approximating multidimensional functions. Specifical
we have considered three polynomialsP2(r ), P3(r ), P4(r )
~of orders 2, 3, and 4! and a composite nonpolynomialF(r )
~of three elementary functions! which, respectively, have th
following expressions:

P2~r !5a01(
i 51

N

aij i1(
i< j

N

bi j j ij j ,

P3~r !5P2~r !1 (
i , j 51

N

ci j j i
2j j1 (

i , j ,k

N

di jkj ij jjk ,

P4~r !5P3~r !1 (
i , j 51

N

ei j j i
3j j1(

i , j

N

f i j j i
2j j

2

1 (
iÞ j ,k; j ,k

N

gi jkj i
2j jjk1 (

i , j ,k, l

N

hi jkl j ij jjkj l ,

~12!
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F~r !5sinS (
i 51

N

aij i D expS 1

N (
i 51

N

aij i D 1cosS (
i 51

N

aij i D
3expS 2

1

N (
i 51

N

aij i D 1 lnF11S (
i 51

N

aij i D 2G .

The expansion coefficients for each function in Eq.~12! are
random numbers assuming alternating1 and 2 signs such
that the function is properly bounded over the correspond
domain ~see footnotes in Table I!. These random number
have been generated, using the DES generator@6#, in the
interval @1,1.5# for 3D functions and in the interval@0,1# for
6D functions.

In the following calculations, input data~i.e., function val-
ues! for each test function were sampled over irregular gri
For simplicity, these irregular grids have been obtained ba
on random numbers again generated by the DES gene
@6#. Specifically, 13 and 11 random numbers were, resp
tively, generated along each coordinate for the 3D cube
for the 6D hypercube, thus yielding 13352197 irregular
points in the former and 11651 771 561 in the latter. The
average distances between any two adjacent data point
0.4 and 0.5 for the 3D and 6D cases, respectively.

Based on the sampled irregular grids, a domain decom
sition procedure has been implemented as follows: The o
lapping subdomains, each associated with a randomly pic
local center, are obtained in succession to cover the wh
domain under consideration. Each subdomain, say, co
sponding to a local centerr c , contains a small number~here
27 in the 3D case and 729 in the 6D case, including
centerr c! of the nearest neighboring~NN! grid points, which
are indexed in ascending orders in terms of distances fromr c
and stored accordingly. Moreover, the local centers are k
apart from one another at appropriate distances. To this
a half or nearly a half~i.e., the first 13 in the 3D case and fir
363 in the 6D case! of the NN grid points associated wit
every local center are excluded from being the local cente
any other subdomains. The ratios of the total numberM of
data points to the number of subdomains are approxima
1-3
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10 in the 3D case and 140 in the 6D case. Consequently
only output data needed to be stored for later evaluation
the functions in the LRA schemes are the local centerr c , the
size of each subdomainV(r c), and the corresponding coe
ficients bk ~or bk

(n)). To evaluate the approximate functio
value f (r ) at an arbitrary pointr in the domain, one simply
recalls the stored output data assigned to a particular su
main with the centerr c closest to the pointr .

Table I gives the average absolute errors of the test fu
tions and their derivatives computed using the two LR
schemes. These results are calculated using 4913~in the 3D!
and 7 529 536~in the 6D case! randomly picked positions
These positions are not on the original grids used to gene
LRA’s. For comparison, a spline-based radial basis funct
~RBF! interpolation was also carried out using multiquadr
~MQ! Aa21r 2. Interpolation based on the RBF’s has r
ceived considerable attention recently because of its ef
tiveness for handling multivariate scattered data@9#. Here,
the same data sets have been utilized for the MQ-RBF in
polation, with the optimized parametera taking on values
between 4 and 10.E( f ), E(d1) andE(d2) in Table I desig-
nate the errors for each function, and its first and sec
derivatives, respectively. The derivatives were explici
evaluated using the two LRA schemes with no special tre
ment exploited for the computations on boundary points. I
found that both the~2,1!- and ~1/2/2,1!-LRA schemes can
accurately approximate multidimensional polynomials, of
least up to fourth order, and an arbitrary nonpolynom
Moreover, the~1/2/2,1! LRA scheme is generally as good a
the ~2,1! LRA in accuracy, except for the second-order po
nomial P2(r ) for which the latter is exact. As expected, th
errors in the derivatives tend to rise in going fromE(d1) to
E(d2). Similar test calculations have also been carried
using input data arranged on evenly spaced regular grid
these cases the LRA results~not shown here! are of the same
quality as those depicted in Table I. On the other hand,
proved results were obtained with the RBF method us
data sampled on evenly spaced regular grids due to the
crease of numerical stability, typical of spline interpolati
methods. In the calculations, the CPU time required by
RBF method is larger by about a factor of 4 for the 3D ca
and 15 for the 6D case over that required by both LR
schemes.

It is important to point out, from the test examples abo
that ~1! the accuracy of the LRA schemes is generally ind
pendent of how the input data are distributed and~2! the

@1# F.S. Mayeret al., J. Chem. Phys.111, 2423~1999!, and refer-
ences therein.

@2# X.-G. Hu et al., Phys. Rev. E61, 5967~2000!, and references
therein.

@3# C.L. Lopreore and R.E. Wyatt, Phys. Rev. Lett.82, 5190
~1999!; J. Suñé and X. Oriols, ibid. comment and reply,85,
894 ~2000!; 85, 895 ~2000!.

@4# Advances in Multivariate Approximation, edited by W. Hauss-
mannet al. ~Wiley-VCH, New York, 1999!.

@5# Multivariate Approximation and Splines, edited by G. Nu¨rn-
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LRA schemes require far fewer data points, e.g., than
RBF method, to attain the same level of accuracy. Th
observations are relevant, particularly when extending
applications to problems of high dimensions. Moreover, it
found that the efficiency of the present method is clos
related to two main components in the implementation:~1!
domain decomposition, which involves a searching pro
dure for distances between the position to be evaluated
the local center of a subdomain and~2! the linear least-
squares procedure for determining the coefficients in the
tional approximation. In the present calculations, the sea
ing algorithm scales roughly asO(M1.5), whereas the
noniterative least-squares procedure scales approxima
linearly, i.e.,O(M ), whereM is the total number of scattere
data points. However, these scalings exhibited some de
dence on the total number of overlapping subdomains. S
cifically, the scaling in the searching procedure is in favor
a small number of subdomains, however, the opposite is
in the least-squares procedure. In practice, the numbe
subdomains will need to be properly chosen for the dom
associated with the givenM to achieve a good balance be
tween efficiency and accuracy.

In summary, the rational approximation methods dev
oped in the paper possess many attractive features impo
to the solution of a variety of problems, including the sol
tion of multidimensional QFD equations. The nonlinear r
tional approximations were implemented in terms of a no
iterative, robust least-squares algorithm. Moreover,
method is meshless and is therefore amendable to an
trary data distribution, which characterizes many data driv
problems. Finally, the LRA schemes are efficient and ac
rate for multidimensional interpolations due, on the o
hand, to the adoption of the moving least-squares techn
in conjunction with proper domain decomposition, and
the other hand, through the use of only first- and seco
order monomials throughout the implementation. In partic
lar, the ~1/2/2,1! LRA involves only linear algebraic equa
tions of small size, scaling as the dimensionalityN of the
problem, and requires only low memory for solving the
equations. The present method was shown to be capab
generating accurate approximations to arbitrarily cho
functions of up to six-dimensions from scattered data. App
cation to the solution of the QFD equations is underway.
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