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Accurate and efficient rational approximation schemes are presented for interpolating multidimensional
scattered data with a novel weighted least-squares procedure including domain decomposition. Two particular
representations of the method are formulated and the corresponding algorithms are implemented. Numerical
tests on three- and six-dimensional model systems are carried out, demonstrating high efficiency and accuracy.
This work was motivated by the need for multidimensional function approximation using irregular grids when
solving quantum fluid dynamics equations, and the method should have broader physical applications.
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Many mathematical modeling problems require multidi- where{#,(r)}z1" is a set of independent multidimensional
mensional scattered data interpolation. A particular case ahonomials whose linear combinations render multidimen-
interest arises in the fluid dynamical formulation of quantumsjonal polynomials with no common factors in the numerator
mechanics which has recently been explored for the simulagng denominator. We propose the following algorithm,
tion of molecular systemkl—3]. Within the Lagrangian de- \jthin the framework of the weighted linear least-squares
scription of quantum fluid dynamidQFD), a major numeri- — nrqcedure, to determine the unknown coefficients in (&

cal(jcgal[enge is the n(_eed for acc;]urate and ﬁfficien.thfuncti'o specially, with the availability of only scattered data. First,
and derivative approximation schemes working with an 'r'rearrange Eq(l) into

regular grid distribution.

It is generally difficult to properly treat multidimensional m i
interpolation and approximation problems, especially, in-  9(1)=bo+ >, bed(1)+9(r) > briidmiw(r), (2)
volving scattered data. Computationally, issues of accuracy, k=1 k=1
efficiency and stability play critical roles in these problemsand then replacg(r) on the right-hand side of the above
[4,5]. The approximation of a function by rational expres- . tion byf(r) to yield the relation
sions has provided an attractive means for a variety of nusaY y
merical applications. One prime advantage of rational ap- m n
proximations is their ability to handle functions with poles, g(r)=bo+ > bed(r)+f(r) >, brskdmer(), (3
which is particularly relevant in solving the QFD equations k=1 k=1

and many other applications. Rational approximations can be . . L
determined in a number of ways,7], but often with prac- which can be considered as a better approximatiof(td

tical limitations, especially, in multidimensional situations. than Eq.(1). The replacement g§(r) by f(r) is essen;ial in
For example, Padapproximants require an explicit series the development of the method. Consequently, the right-hand

expansion of the function to be approximated, and numericaﬁIde Qf. Eq.(3) now becomes linear in terms of the unknown
values of the corresponding high order function derivative<O€fficients, assuming that the valuesf¢f) are known on
are usually not readily available. Moreover, although the co@n irregular grid. Given a set of dafg;,f(ri)}i~; such that
efficients of the desired rational approximation can be deteM=m+n+1, and an appropriate weight(r;), minimiza-
mined by interpolating any set of tabulated data points, thdion of the quadratic error functional

procedure is usually feasible only for one-dimensional prob- M

lems. Finally, the related continued fractions are yet to be J[{bk}]=2 [f(r)—g(r))]?w(r)), (4)
explored for multidimensional applications. Below, a robust =1
least-squares approach in conjunction with a domain decom-. . . .
position technique is introduced for generating multidimen-y'e'dS a set ofm+nt 1 !!H?Ef" algebraic equations for the

sional rational approximations using scattered data. This aginknown coefficientgbyji':

proach is intended to circumvent many practical difficulties m+n
with the existing methods. > agbe=B k=012...(m+n) (5)
A rational approximation of arN-dimensional function =0

f(r) in a Cartesian coordinate frame={¢,,&,, . .. &y} can )

be expressed as follows with
m N M M

g(r)= b0+k21 bk¢k(f)) / (1_;1 b kb i(F) | s akj:;l Bi(ri)B;(riw(r;), Bk:izl f(r)By(riw(r;),

7 7 M ©

where {Bj(r)}?“jon is a new basis set composed of
{1,¢p(r),f(r)¢q(r.)}girf;‘1.'fﬁn2’.""m_+”. In general, the ac-
*Present address: Life Science Department, Accelrys Ltd., 9688uracy of the rational approximation will increase as addi-

Scranton Road, San Diego, CA 92121. tional higher order monomials are included in Egj), how-
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ever the efficiency of solving E@5) will decrease due to the where the numbeK{" of unknown coefficient®{? remains
increased number of unknown coefficients. In the followingas 2N+ 1.

treatment, assuming that the functibfr) is locally smooth In the second step, further corrections are performed by
then good accuracy and efficiency can be achieved by thF‘epIacing the second-order diagonal teisn the numera-
domain decomposition technique, i.e., dividing the underlyo; \ith the remaining second-ordeross terms. For an
ing domain into a set obverlappingsubdomains, without N_gimensional problem, there are altogethii,=N(N

invoking high order monomials in Ed1). ez AN .
With a properly chosen weight function(r,r.), a local 172 second-orqler Cro_ss_' monom@(f& )_k}'fil' To attain )
rational approximatiorg(r,r.) to f(r) over a subdomain V€N more numerical efficiency, this step is implemented in a
v sequence of small steps. Specifically, when the dimensional-

Q centered atr.= Y T , is then ied i L :
omj(tr?gllowingrthe Za?ne{gigcgezéures dgeNscgriblzd i mﬁ[g). ity N is an odd number, thBl, cross terms are divided into

This process is repeated using a sequence of properly ChOS@Flh:(N_.l)/Z subgroupsk; ea‘;‘h with d‘ger(;nsa .LikSWij’e’
Q(r.)’s to cover the whole domain. In the following treat- whenN is an even number, they are divided imig=N/2

ment, two local rational approximatior&RA) using only ~ Subgroups, each with—1 terms. In each small step, only a
low-order monomials are presented. small number, eitheN or N—1, of cross terms are included

The first LRA, hereafter referred to &2,1) LRA, is based  [or the correction. At the r{—1)th small step withn>1,
on employing all monomials up to second-order in the nufollowing the same procedures as described in the first cor-
in terms of the finst 1 sub-

merator and only first-order monomials in the denominatoff€ction step, we can easily, , ,
to produce groups of second-order cross terms, arrive at the expression

N N’ N/
bo<rc>+k21 bk<rc>2k+k21 by (re) (B ) oy 1>(r,rc>+bg”’<rc)+k§1 b{"(ro)(€€7),
- - , 9 (r,ro)=

’

Op4(r,re)= N N
1_21 Py k() €k 1_;::1 bg\jnf)+k(rc)§k
(7)

where &= &— & and N’=N(N+1)/2 with N being the
dimensionality ofr. Here, the second-order monomials arewhere N'=N when N is an odd number antl’=N—-1
denoted asgZ'), and the total numbeN,, of unknown co- whenN is an even number. We remark that the vegdicf.
efficients isN+ (N+1)(N+2)/2. Although Eq.(7) in prin-  Eq.(6)] consists of the quantitj(r;) — g%y *(r;,r.), instead
ciple can include higher order monomials, numerical result®f just f(r;), in the calculations leading T@(ﬂ(r,rc). More-
indicate that the current formulation, with suitable domainover, the same set of local dajg ,f(ri)}:-zl for the subdo-
decompositions, is efficient and accurate for rendering googéhainQ(r,) is utilized throughout the second correction step.
accuracy. - . _ _ The numbeiN{™ of unknown coefficientd{"” with n>1 in
The second LRA is implemented in tvpartial correction  gach step is ® whenN is even and R+ 1 whenN is odd.
steps for attaining better numerical eff|C|en_cy, i.e., in termSFinaIIy, eachg(z"{(r,rc) with n>1 takes on a closed form of
of smaller computer memory storage, and is related to corg, yarg continued fractions of low-order polynomials after
tinued fractions. The scheme starts, i.e., at the zeroth steg,pressing all its preceeding counterparts explicitly in terms
with a (1,1) LRA of monomials. The complete continued fraction LRA
g(znfl)(r,rc) is hereafter denoted 4%/2/2,3) LRA. Our nu-
merical results in this paper reveal that the accuracy of the
N ' tS) (1/2/2,1) LRA is nearly independent of the chosen ordering
1-> b(NOlk(rc)Ek of the correction sequence. The main advantage of 1t
k=1 2,1) LRA s that the numbeN{" of the unknown coefficients
around the local center,. It is noted that, in this step, only b{", with n=0,1,2 ... ns+1, in each correction step, in-
NE,O)= 2N+1 unknown coefficientd(?) are involved over cluding the zeroth one, scales linearly with the spatial dimen-
the subdomaif)(r.) utilizing the data sefr; 'f(ri)}g_:l with S|(2)nallty N while the numbeN, for (2,1) LRA scales with
L=2N+1. N*. _ _ _ _ _
In the first correction step, to improve the accuracy of Eq. 1he choice of weight functiow(r,rc) in the weighted

n=2,...ns+1, (10

N
bé°>(rc>+k§1 bO(rc) &

gg.(,)])_(r!rc):

(8), a partial correction, involving thél,1) LRA and all  least-squares procedure, cf. E¢$, (5), and(6), may have
second-ordediagonalmonomials in the numerator, is intro- Significant effect on the accuracy and stability of the pro-
duced via the followingansatz posed LRA methods. Three commonly used weight functions
N are Gaussians, cubic splines, and quartic splj8ésHow-
0 1 1 ~ ever, our numerical results in some=3 and 6 model sys-
gﬁ(rJCHbg )(r°)+k21 b(k )(rC)fk tems (see below showed that the LRA methods based on
gsi(r,ro) = N . (90 thesea priori weight functions are less accurate and stable
1-> b (& even compared to their counterparts based on a simple con-
k=1 stant weight. In the following a robust procedure is proposed
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TABLE I. Errors for functions and their derivatives.

(2,) LRA (1/2/2,3 LRA RBF 2
E(f)° E(d1) E(dy) E(f) E(d1) E(dy,) E(f) E(d1) E(dy,)

three-dimensional case

P, exact exact exact 3+4] 43-3] 3.0-2] 69-6] 44—-4] 11-2]°
P; 43-4] 34-3] 50-2] 471-4] 61-3] 45-2] 10-3] 49-2] 14-1]
P, 54-4] 39-3] 51-2] 84-4] 84-6] 91-2] 271-3] 12Z-2] 94-1]
F 46-4] 5(0-3] 55-2] 24-4] 40-3] 70-2] 83-4] 271-2] 17-1]

six-dimensional case

P, exact exact exact 134] 25-3] 28-2] 3.71-6] 8g-4] 7.3-3]
P, 3.0-4] 41-3] 23-2] 7.71-4] 68-3] 81-2] 1.9-3] 37-2] 1.0-1]
P, 44-4] 39-3] 3d-2] 89-4] 93-3] 84-2] 272-3] 39-2] 83-1]
F  20-4] 19-3] 14-2] 57M-4] 63-3] 74-2] 79-4] 1.3-2] 31-1]

%a=6 is used.
bForN=3, —1<P,<1 and—2<F=<2. ForN=6, —1.5<P,, F<1.5.
9 —k] means 10X throughout the table.

to incorporatea posterioriweights that are intended to pro- N 1 N N

vide good accuracy and stability to the methods: First, we F(r)=sin(2 ai§i>exp(ﬁ E a;éi +cos(2 ai§i>
solve the linear algebraic equations for the unknown coeffi- i=1 i=1 i=1
cientsby (or b(k“)) over each subdomaifi(r.) with a con- 1 N N 2
stant weightw(r)=1. Then, we calculate the deviations ><exp< - — E ;& | +Inf 1+ E aigi) .
di(ro)=|f(r))—g(r;,ro)|,i=1,2,... L to obtain thea pos- N =1 i=1

teriori weight of the form The expansion coefficients for each function in ER) are

W(ri,re)=1=di(re)/dmadre), (1) random numbers assuming alternatihgand — signs such

. _ . that the function is properly bounded over the correspondin

v_vheredmax(rc_) is the largest de\_/|at|on out OT the devia- ._domain (see footno?espin yl'able).IThese random nurgbers ’

tionsd;(r). Finally, we once again solve the linear algebraicy,5e peen generated, using the DES genef@brin the

equations for the same set of unknown coefficients using thﬁqterval[l,l.S] for 3D functions and in the interv40,1] for

weights based on Eq11). The test results show that this gp functions.

procedure can significantly improve the overall accuracy and | the following calculations, input datae., function val-

stability. ue9 for each test function were sampled over irregular grids.
Numerical tests of the LRA schemes are carried out orFor simplicity, these irregular grids have been obtained based

three-dimensional3D) and six-dimensional6D) functions  on random numbers again generated by the DES generator

defined in the associated hypercubesl,1]® and[—1,1]°, [6]. Specifically, 13 and 11 random numbers were, respec-

respectively. These examples, given functional values ovetively, generated along each coordinate for the 3D cube and

irregular grids, demonstrate the quality of the LRA schemedor the 6D hypercube, thus yielding 332197 irregular

for approximating multidimensional functions. Specifically, points in the former and ££1 771561 in the latter. The

we have considered three polynomids(r), Ps(r), P4(r) average distances between any two adjacent data points are

(of orders 2, 3, and}and a composite nonpolynomigi(r) 0.4 and 0.5 for the 3D and 6D cases, respectively.

(of three elementary functionsvhich, respectively, have the ~ Based on the sampled irregular grids, a domain decompo-

following expressions: sition procedure has been implemented as follows: The over-
N N lapping subdomains, each associated with a randomly picked

_ local center, are obtained in succession to cover the whole

Pz(r)—ao+i§1 aifi+i§j bij &i€j domain under consideration. Each subdomain, say, corre-

sponding to a local centeg, contains a small numbéhere
27 in the 3D case and 729 in the 6D case, including the
centerr ) of the nearest neighborin®N) grid points, which
N N are indexed in ascending orders in terms of distances from
3 2.0 and stored accordingly. Moreover, the local centers are kept
Pa(r)= P3(T)+ijE:1 €ij¢i §i+i2<j fij&¢; apart from one anotﬁgr at appropriate distances. To this en%,
' a half or nearly a halfi.e., the first 13 in the 3D case and first
N N 363 in the 6D cageof the NN grid points associated with
+ E Okl iEt E hijk & &éké every local center are excluded from being the local center of
Lk <k P<i<k<l any other subdomains. The ratios of the total numieof
(12 data points to the number of subdomains are approximately

N N
Pa(r)= Pz(r)+i]2:1 cij§$§j+i<]2<k dij&i&; .
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10 in the 3D case and 140 in the 6D case. Consequently, tHeRA schemes require far fewer data points, e.g., than the
only output data needed to be stored for later evaluations gRBF method, to attain the same level of accuracy. These
the functions in the LRA schemes are the local cengethe  ohservations are relevant, particularly when extending the
size of each suggiomaﬁ(rc), and the corresponding coef- appjications to problems of high dimensions. Moreover, it is
ficients b, (or by”). To evaluate the approximate function found that the efficiency of the present method is closely
valuef(r) at an arbitrary point in the domain, one simply  rejated to two main components in the implementatidn:
recfalls Fhe stored output data aSS|gned.to a particular subdggpmain decomposition, which involves a searching proce-
main with the center, closest to the point. dure for distances between the position to be evaluated and

Table | gives the average absolute errors of the test funGya |ocal center of a subdomain arf@) the linear least-
tlorr:s and _I'fﬂe'r derlvrlcltlves colmplutectjj using tgiﬁms? I-RAsquares procedure for determining the coefficients in the ra-
schemes. ' nese resu ts are calculate using q €: D tional approximation. In the present calculations, the search-
and 7 52953€in the 6D casgrandomly picked positions. {ng algorithm scales roughly a©(M9), whereas the

e L

These positions are not on the original grids used to general oniterative least-squares procedure scales approximatel
LRA's. For comparison, a spline-based radial basis function. q P P y

(RBF) interpolation was also carried out using multiquadrics mearly,_l.e.,O(M), whereM is the _total ”“”.‘b_er of scattered
(MQ) JaZ+r2 Interpolation based on the RBF's has re- data points. However, these scalings gxh|b|ted some depen-
ceived considerable attention recently because of its ef'fecq_e.nce on the tot-al qumber of ovgrlappmg subd.omams. Spe-
tiveness for handling multivariate scattered dggh Here, cifically, the scaling in the sgarchlng procedure is |n.fav.or of
the same data sets have been utilized for the MQ-RBF intef small number of subdomains, however, .the opposite is true
polation, with the optimized parameter taking on values N the Ieast-squares procedure. In practice, the number 'of
between 4 and 1E(f), E(d,) andE(d,) in Table | desig- subdo_malns Wlll need_ to be propgrly chosen for the domain
nate the errors for each function, and its first and secon@ssociated with the giveN to achieve a good balance be-
derivatives, respectively. The derivatives were explicitlytween efficiency and accuracy.
evaluated using the two LRA schemes with no special treat- In summary, the rational approximation methods devel-
ment exploited for the computations on boundary points. It ioped in the paper possess many attractive features important
found that both thg?2,1)- and (1/2/2,)-LRA schemes can to the solution of a variety of problems, including the solu-
accurately approximate multidimensional polynomials, of attion of multidimensional QFD equations. The nonlinear ra-
least up to fourth order, and an arbitrary nonpolynomial.tional approximations were implemented in terms of a non-
Moreover, the(1/2/2,1) LRA scheme is generally as good as iterative, robust least-squares algorithm. Moreover, the
the (2,1) LRA in accuracy, except for the second-order poly- method is meshless and is therefore amendable to an arbi-
nomial P,(r) for which the latter is exact. As expected, the trary data distribution, which characterizes many data driven
errors in the derivatives tend to rise in going fréd,;) to  problems. Finally, the LRA schemes are efficient and accu-
E(d,). Similar test calculations have also been carried outate for multidimensional interpolations due, on the one
using input data arranged on evenly spaced regular grids. Inand, to the adoption of the moving least-squares technique
these cases the LRA resu(tsot shown hergare of the same in conjunction with proper domain decomposition, and on
quality as those depicted in Table I. On the other hand, imthe other hand, through the use of only first- and second-
proved results were obtained with the RBF method usingorder monomials throughout the implementation. In particu-
data sampled on evenly spaced regular grids due to the itar, the (1/2/2,1) LRA involves only linear algebraic equa-
crease of numerical stability, typical of spline interpolationtions of small size, scaling as the dimensionaltyof the
methods. In the calculations, the CPU time required by thgroblem, and requires only low memory for solving these
RBF method is larger by about a factor of 4 for the 3D caseequations. The present method was shown to be capable of
and 15 for the 6D case over that required by both LRAgenerating accurate approximations to arbitrarily chosen
schemes. functions of up to six-dimensions from scattered data. Appli-
It is important to point out, from the test examples above cation to the solution of the QFD equations is underway.
that (1) the accuracy of the LRA schemes is generally inde- The authors acknowledge support from the Department of
pendent of how the input data are distributed d8gdthe  Energy.
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